Progressive compression of arbitrary textured meshes

نویسندگان

  • Florian Caillaud
  • Vincent Vidal
  • Florent Dupont
  • Guillaume Lavoué
چکیده

In this paper, we present a progressive compression algorithm for textured surface meshes, which is able to handle polygonal non-manifold meshes as well as discontinuities in the texture mapping. Our method applies iterative batched simplifications, which create high quality levels of detail by preserving both the geometry and the texture mapping. The main features of our algorithm are (1) generic edge collapse and vertex split operators suited for polygonal non-manifold meshes with arbitrary texture seam configurations, and (2) novel geometry-driven prediction schemes and entropy reduction techniques for efficient encoding of connectivity and texture mapping. To our knowledge, our method is the first progressive algorithm to handle polygonal non-manifold models. For geometry and connectivity encoding of triangular manifolds and non-manifolds, our method is competitive with state-of-the-art and even better at low/medium bitrates. Moreover, our method allows progressive encoding of texture coordinates with texture seams; it outperforms state-of-the-art approaches for texture coordinate encoding. We also present a bit-allocation framework which multiplexes mesh and texture refinement data using a perceptually-based image metric, in order to optimize the quality of levels of detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive compression of arbitrary textured meshes - Supplementary Materials

To validate our edge selection strategy, we present here the rate distortion curves obtained using different edge selection metrics: Hausdorff distance wgc, texture seam deviation wt and the combination that we propose wgc + wt . We use the multiscale SSIM metric presented in the paper to evaluate the quality of the obtained levels of detail (the texture map is kept in its highest resolution fo...

متن کامل

Rate-Distortion Optimal Mesh Simplification for Communications

The thesis studies the optimization of a specific type of computer graphic representation: polygon-based, textured models. More precisely, we focus on meshes having 4-8 connectivity. We study a progressive and adaptive representation for textured 4-8 meshes suitable for transmission. Our results are valid for 4-8 meshes built from matrices of amplitudes, or given as approximations of a subdivis...

متن کامل

Compression of Normal Meshes

Normal meshes were recently introduced as a new way to represent geometry. A normal mesh is a multiresolution representation which has the property that all details lie in a known normal direction and hence the mesh depends only on a single scalar per vertex. Such meshes are ideally suited for progressive compression. We demonstrate such a compression algorithm for normal meshes representing co...

متن کامل

Normal Mesh Compression

Normal meshes were recently introduced as a new way to represent geometry. A normal mesh is a multiresolution representation which has the property that all details lie in a known normal direction and hence the mesh depends only on a single scalar per vertex. Such meshes are ideally suited for progressive compression. We demonstrate such a compression algorithm for normal meshes representing co...

متن کامل

Efficient implementation of progressive meshes

In earlier work, we introduced the progressive mesh (PM) representation, a new format for storing and transmitting arbitrary triangle meshes. For a given mesh, the PM representation defines a continuous sequence of level-of-detail approximations, allows smooth visual transitions (geomorphs) between these approximations, supports progressive transmission, and makes an effective compression schem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016